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Abstract 21 

Safety evaluation for medical devices includes the toxicity assessment of chemicals used 22 

in device manufacturing, cleansing and/or sterilization that may leach into a patient. According to 23 

international standards on biocompatibility assessments (ISO 10993), chemicals that could be 24 

released from medical devices should be evaluated for their potential to induce skin 25 

sensitization/allergenicity, and one of the commonly used approaches is the guinea pig 26 

maximization test (GPMT). However, there is growing trend in regulatory science to move away 27 

from costly animal assays to employing New Approach Methodologies including computational 28 

methods. Herein, we developed a new computational tool for rapid and accurate prediction of the 29 

GPMT outcome that we named PreSS/MD (Predictor of Skin Sensitization for Medical Devices). 30 

To enable model development, we (i) collected, curated, and integrated the largest publicly 31 

available dataset for GPMT; (ii) succeeded in developing externally predictive (balanced accuracy 32 

of 70-74% as evaluated by both 5-fold external cross-validation and testing of novel compounds) 33 

Quantitative Structure-Activity Relationships (QSAR) models for GPMT using machine learning 34 

algorithms, including Deep Learning; and (iii) developed a publicly accessible web portal 35 

integrating PreSS/MD models that enables the prediction of GPMT outcomes for any molecules 36 

using. We expect that PreSS/MD will be used by both researchers and regulatory agencies to 37 

support safety assessment for medical devices and help replace, reduce or refine the use of animals 38 

in toxicity testing. PreSS/MD is freely available at https://pressmd.mml.unc.edu/. 39 

Keywords: sensitization, GPMT, QSAR, deep learning,   40 

https://pressmd.mml.unc.edu/
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Introduction 41 

Sensitization is a toxicological endpoint associated with the ability of an offending 42 

chemical to cause or elicit an allergic response in some people following repeated exposures to the 43 

allergen.1,2 Traditionally, assessing the sensitization potential for a chemical or material has relied 44 

on the use of animal models. The guinea pig maximization test (GPMT) of Magnusson and 45 

Kligman3 and the Buehler test4 have been predominantly used methods for more than five-decades 46 

since their original development.3,4 Alternative assays, such as the murine Local Lymph Node 47 

Assay (LLNA), have been employed for assessing skin sensitization as well. However, more 48 

recently, regulatory agencies have been supporting the development of alternative in vitro and in 49 

chemico methods that could help reduce, refine or replace testing in animals without compromising 50 

the acceptable standards for the identification of sensitizers.5,6  51 

Medical devices encompass a vast array of products intended to treat patients or diagnose 52 

diseases or other health-compromising conditions.7 For marketing in the United States, the Food 53 

and Drug Administration (FDA) has set the definition of a medical device in Section 201(h) of the 54 

Food, Drug, and Cosmetic Act.8 Medical devices require a pre-market biocompatibility assessment 55 

described in Guidance for Industry and FDA Staff on Use of International Standard ISO 10993-1, 56 

Biological evaluation of medical devices - Part 1: Evaluation and testing within a risk 57 

management process.9 Many medical devices, such as implants and glucose meters, contain 58 

chemicals that may leach and cause toxicity.10–12 Depending on the type and the duration of the 59 

contact with the body, a device may be evaluated for its biocompatibility, including the potential 60 

to produce localized sensitization responses.13 Pre-market submissions for medical devices address 61 

sensitization potential with data gathered primarily with the GPMT or Buehler tests as 62 
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recommended by the International Organization for Standardization (ISO) standard 10993 Part 63 

10.9  64 

In the last several years, both our14–16 and other17,18 groups have developed computational 65 

models for predicting the sensitizing activity of chemicals in LLNA. In an effort to modernize the 66 

evaluation of medical devices potential for causing skin sensitization and help reduce in vivo 67 

animal testing, we embarked on the development of a unique open-source computational tool and 68 

web app that we named PreSS/MD (Predictor of Skin Sensitization caused by Medical Devices). 69 

We envisioned a context of use where this tool can be employed to assess the skin sensitization 70 

potential of medical devices, to supplement and, potentially, replace the experimental assessments 71 

such as animal-based tests currently accepted for regulatory submissions of medical devices. To 72 

achieve this goal, we (i) collected, curated, and integrated the largest publicly available dataset for 73 

GPMT; (ii) developed and externally validated QSAR models to predict GPMT; and (iii) 74 

incorporated GMPT models into the PreSS/MD web portal to help evaluate the skin sensitization 75 

potential for medical devices. 76 

 77 

Materials and Methods 78 

The workflow employed in the study is depicted in Figure 1. 79 

 80 

Figure 1. Key elements of the study design. See text for detailed description of each step of the 81 

workflow. 82 
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 83 

Data collection and curation 84 

European Chemical Agency (ECHA) dataset 85 

Experimental animal data on skin sensitization evaluated with the Guinea Pig 86 

Maximization Test (GPMT) were retrieved from the ECHA study results database 87 

(https://iuclid6.echa.europa.eu/reach-study-results). Unfortunately, there were numerous 88 

problems with the collected raw data. For instance, many numerical data were represented as string 89 

variables, the units of measurements were not standardized through the datasets, and there were 90 

many “free text” data. Therefore, we extensively cleaned and standardized all the data and 91 

converted measurements to the same units in each dataset. We also used regex expressions to find 92 

essential features for the database that were described in text format; this was key to classifying 93 

endpoints into GHS hazard categories. Following this laborious data preparation and 94 

standardization, we performed both chemical and biological data curation. After removing 95 

inconsistent data and non-modelable compounds (see Data Curation section), 1,023 out of the 96 

original 5,727 data points were kept. Among 23 duplicate chemical pairs in the dataset, biological 97 

annotations for 20 of them were concordant and for three, were discordant, i.e., duplicative 98 

compounds had different annotated classifications (sensitizer vs. non-sensitizer). All the discordant 99 

replicates and one of each concordant replicate were removed. The final dataset comprised 995 100 

unique chemical compounds, including 247 sensitizers and 748 non-sensitizers.  101 

Literature 102 

We also collected GPMT skin sensitization experimental data from the scientific 103 

literature.19–23 After removing mixtures, inorganics, and counter ions, 701 out of the original 745 104 

data points were kept. Only one pair of duplicates showed biological annotation disagreement 105 

https://iuclid6.echa.europa.eu/reach-study-results
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among 221 chemicals with more than one data point in the dataset. The discordant replicates were 106 

removed and only one data point for each concordant replicate was kept. Thus, the final dataset 107 

had 374 unique chemical compounds, including 173 sensitizers and 201 non-sensitizers. 108 

 109 

Combined GPMT data from ECHA and the literature 110 

We merged the curated data from ECHA and the research literature and examined the 111 

content of this combined data. There were 41 pairs of replicates between these two data sets, and 112 

the sensitization potential of only six of these pairs was annotated differently. These discordant 113 

records were removed, and only one record for each concordant pair of duplicates was kept. The 114 

merged data set had 1322 unique compounds including 432 sensitizers and 890 non-sensitizers, 115 

i.e., it was imbalanced with the ratio of sensitizers to non-sensitizers of approximately 1:2. 116 

 117 

Case studies sets 118 

An additional literature search executed identified nine new compounds with GPMT data 119 

that were not part of the training set used for model development. These compounds were 120 

standardized and used as an additional validation set. We also collected the 474 compounds 121 

available in the Extractables and Leachables Safety Information Exchange (ELSIE) Database24 122 

After the removal of inorganics, mixtures, and duplicates, 415 compounds remained. We found 123 

that 102 compounds were present on our GPMT list and 313 unique compounds were kept for 124 

model evaluation. 125 

 126 
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Data curation 127 

Datasets were thoroughly curated following the workflows developed by us earlier.25. First, 128 

we performed chemical structure curation and removed mixtures, inorganics, and organometallic 129 

compounds, cleaned and neutralized salts, normalized the specific chemotypes, and applied the 130 

special treatment to chemicals with multiple replicated records as follows: (i) when replicated 131 

records presented the same binary outcome, only one record was kept; (ii) when a majority of 132 

replicated records presented the same binary outcome and one had different binary outcome, only 133 

one record with the agreeing binary outcome was kept, (iii) when replicated records had different 134 

binary outcomes, all of them were removed. All the curated data are available in Supplementary 135 

Material. 136 

 137 

QSAR modeling 138 

The modelability index (MODI)26 was calculated to estimate the feasibility of obtaining 139 

predictive QSAR models. We developed our models following the best practices of QSAR 140 

modeling.27 The models were developed using open-source chemical descriptors based on ECFP4-141 

like circular fingerprints with 2048 bits and an atom radius of 2 (Morgan2) calculated in RDKit28. 142 

Machine learning approaches included Support Vector Machine (SVM)29, Random Forest (RF),30 143 

and Light Gradient Boosting Machines (lightGBM) algorithms implemented in Scikit-learn.31 All 144 

models were optimized using a Bayesian approach implemented in Scikit-Optimize v.0.7.4.32 The 145 

details of hyperparameters explored in this work are available in the Supporting Information. The 146 

Bayesian optimization may be defined as follows (Equation 1): 147 

P(𝑓|D1:𝑡) ∝  P(D1:𝑡|𝑓)P(𝑓)         (1) 148 
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where, xi is the ith sample, and 𝑓(xi) is the observation of the objective function at xi. The 149 

observations D1:t = {x1:t, 𝑓(x1:t)} are accumulated. The prior distribution is combined with the 150 

likelihood function P(D1:t|𝑓) of overserving D1:𝑡 given model 𝑓 multiplied by the prior probability 151 

of P(𝑓). In doing so, Bayesian optimization finds hyperparameters that maximize the objective 152 

function (G-mean score) by building a surrogate function (probabilistic model) based on past 153 

evaluation hyperparameters of the objective.32,33 The geometric (G)-mean was selected as the 154 

scorer since it measures the balance between classification performances on both the majority 155 

(non-toxic) and minority (toxic) classes. 156 

The QSAR models employing deep learning were developed using Keras 157 

(https://keras.io/), a deep learning library, and Tensorflow (www.tensorflow.org), a flexible 158 

architecture that allows the deployment of calculations to desktops or servers, as backend. In 159 

addition, the following parameters of the deep learning method were optimized before model 160 

training: layer type (dense), hidden layers (3), activation function (ReLU), output layer function 161 

(sigmoid), model optimizer (Adam), loss function (binary cross-entropy). Balanced accuracy (BA) 162 

was used as a parameter to judge the performance of the models. The following hyperparameters 163 

were utilized for further deep learning training: epochs (5, 10, 50, 100) and batch size (10, 20, 40, 164 

60, 80, 100). 165 

The predictivity of the models were assessed by the Equations 2-7: 166 

Balanced accuracy: 167 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)

2
     (2) 168 

Sensitivity: 169 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
       (3) 170 

Specificity: 171 
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
        (4) 172 

Positive Predictive Value (PPV): 173 

     𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
        (5) 174 

Negative Predictive Value (NPV): 175 

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
        (6) 176 

Kappa 177 

𝐾𝑎𝑝𝑝𝑎 =  
2×(𝑇𝑃×𝑇𝑁−𝐹𝑁×𝐹𝑃)

(𝑇𝑃+𝐹𝑃)×(𝐹𝑃+𝑇𝑁)+(𝑇𝑃+𝐹𝑁)+(𝐹𝑁+𝑇𝑁)
    (7) 178 

where TP are the true positives, FP are the false positives, TN are the true negatives, and FN are 179 

the false negatives. 180 

 181 

Mechanistic interpretation of QSAR models 182 

Maps of predicted fragment contribution34,35 were generated from the QSAR models to 183 

help identify and visualize the substructure(s) predicted to provide significant contribution to the 184 

skin sensitization potential. Here, the contribution of an atom is estimated by a contribution 185 

difference obtained when the associated bits in the fingerprint corresponding to the atom are 186 

removed. Then, the normalized contributions were used to color-code the atoms in a topography-187 

like map, in which green indicates negative contribution for toxicity (i.e., skin sensitization reduces 188 

when the atom is absent), and magenta indicating a positive contribution for toxicity (i.e., skin 189 

sensitization increases when the atom is present).35 190 

 191 
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Model implementation 192 

The PreSS/MD web app was implemented on an Ubuntu Server. The app is coded using 193 

Flask (http://flask.pocoo.org), uWSGI (https://uwsgi-docs.readthedocs.org), Nginx 194 

(http://nginx.org), Python (https://www.python.org), RDKit (http://www.rdkit.org), scikit-learn 195 

(http://scikit-learn.org), and JavaScript (http://www.ecma-international.org). PreSS/MD also 196 

includes the JSME molecule editor written in JavaScript,36 supported by the most popular web 197 

browsers. Java or Flash plugins are not required to use the app.  198 

 199 

Results and discussions 200 

QSAR models for predicting skin sensitization using GPMT data 201 

High values of MODI (≥0.7) allowed us to expect that robust and predictive QSAR models 202 

could be developed for this dataset. The statistical characteristics of the skin sensitization models 203 

built and validated using GPMT data are shown in Table 3. The machine learning models built 204 

using RF, SVM, lightGBM, and Deep Learning were able to predict the external set with balanced 205 

accuracy of 73%, 74%, 70%, and 72%, respectively.  206 

 207 

Table 1. Statistical Characteristics of QSAR Models developed for GPMT estimated on the 208 

external set. 209 

Model Balanced 

accuracy 

Sensitivity Specificity PPV NPV Kappa 

RF  0.73 0.84 0.63 0.53 0.89 0.41 

SVM  0.74 0.70 0.79 0.62 0.84 0.47 

lightGBM  0.70 0.66 0.75 0.56 0.82 0.39 

Deep Learning 0.72 0.62 0.81 0.62 0.81 0.44 

 210 

PreSS/MD usability 211 

PreSS/MD has an intuitive user interface (Figure 2). The user may draw a molecule of 212 

interest or directly paste the query chemical structure’s SMILES string in the “molecular editor” 213 

http://flask.pocoo.org/
https://uwsgi-docs.readthedocs.org/
http://nginx.org/
https://www.python.org/)
http://www.rdkit.org)/
http://www.ecma-international.org/
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box. After hitting the “Predict” button, the user will receive the predicted skin sensitization 214 

potential. These predictions are followed by the prediction’s confidence, which is estimated by the 215 

ratio of predictions made by internal models,30 the applicability domain (AD), and the maps of 216 

predicted fragment contribution. 217 

 218 

Figure 2. General capabilities of the PreSS/MD web portal, which is available at 219 

https://pressmd.mml.unc.edu/. 220 

 221 

Case studies 222 

As an example of a practical application, we tested PreSS/MD by employing it to predict 223 

the skin sensitization potential of nine medical device ingredients identified internally at the FDA 224 

with discordant data between GPMT and human clinical data. We compared this list with the 225 

dataset used to build our models and found that all these compounds were new and were not 226 

included in the original dataset. Therefore, we performed a blind prediction using the PreSS/MD 227 

to predict the skin sensitization potential of these nine compounds. The predicted results are shown 228 

in Table 4. PreSS/MD correctly predicted six out of nine compounds (balanced accuracy of 65%, 229 

https://pressmd.mml.unc.edu/
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sensitivity of 80%, specificity of 50%, PPV of 66% and NPV of 66%). Although the evaluation of 230 

these nine compounds presented low specificity, the NPV indicates the probability of predicted 231 

non-sensitizer being truly non-sensitizers is high as 66%. 232 

 233 

Table 2. Experimental activity and predictions for case study chemicals. 234 

Ingredient GPMT Press/MD prediction 

Abietic Acid Sensitizer Sensitizer 
Ethanol Sensitizer Non-sensitizer 
Eugenol Sensitizer Sensitizer 
Geraniol Non-sensitizer Non-sensitizer 
Methylparaben Non-sensitizer Non-sensitizer 
Sulfanilic Acid Sensitizer Sensitizer 
1,2-Dibromo-2,4-dicyanobutane Non-sensitizer Sensitizer 
2-Methyl-3(2H)-isothiazolone Sensitizer Sensitizer 
4,5-Dichloro-2-methyl-4-isothiazolin-3-one Non-sensitizer Sensitizer 

 235 

In addition to these nine compounds with GPMT data, we exploited our models to predict 236 

a list of 474 chemicals known to leach from MD. After the removal of inorganics, mixtures, and 237 

duplicates, 415 compounds remained, and we found that 102 compounds were present in our 238 

curated GPMT list. Out of the 313 remaining compounds, our models predicted 98 compounds as 239 

sensitizers in the GPMT assay and 215 as non-sensitizers. We analyzed this list’s overlap with the 240 

expanded skin sensitization dataset of human, LLNA, and three non-animal assays (DPRA, 241 

KeratinoSens, and h-CLAT) data described in our previous paper.14 Out of 313 chemicals, we 242 

found that 34 had experimental data in one of the skin sensitization assays. Table 3 shows the 243 

concordance of the predicted values using PreSS/MD and the skin sensitization potential available 244 

from experimental assays. Although the pool of compounds was small, the results show a high 245 

concordance with all assays. This high concordance suggests that integration of PreSS/MD models 246 

with non-animal methods, such as DPRA, KeratinoSens, and h-CLAT may be complementary to 247 

assess skin sensitization. 248 
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 249 

Table 3. Confusion matrices comparing PreSS/MD predictions and the experimental data from 250 

other assays for the 34 compounds from the leachable medical device list.  251 

  PreSS/MD predictions  

Experimental data  Sensitizer Non-sensitizer Total 

Human 
Sensitizer 3 1 4 

Non-sensitizer 1 3 4 

LLNA 
Sensitizer 6 3 9 

Non-sensitizer 6 18 24 

DPRA 
Sensitizer 3 1 4 

Non-sensitizer 1 4 5 

KeratinoSens 
Sensitizer 4 2 6 

Non-sensitizer 2 3 5 

h-CLAT 
Sensitizer 5 2 7 

Non-sensitizer 1 1 2 

 252 

The use of GPMT to predict human skin sensitization. 253 

Previously, we analyzed the correlation of LLNA and Human skin sensitization data to 254 

understand how valuable the animal model is for determining risk assessment.37 As GPMT is still 255 

being used to check the sensitization potential of leachable chemicals from medical devices,9 we 256 

decided to conduct a similar analysis we reported before, when comparing LLNA vs. human data.37 257 

Here we compared the overlap between the 1322 compounds with GPMT data and the 138 258 

compounds with human data we previously reported elsewhere.14 As seen in Table 4, 109 259 

compounds were both tested in GPMT and had human clinical data. In total, 46 compounds were 260 

sensitizers in both tests and 41 compounds were classified as non-sensitizers in both tests, while 261 

22 disagreed in classification. Therefore, our analysis has shown that the accuracy of using GPMT 262 

to predict human skin sensitization is estimated to have the balanced accuracy of 80%, sensitivity 263 

of 85%, PPV of 77%, specificity of 74%, and NPV of 84%. Out of the 112 compounds shown in 264 

Table 4, 14 compounds were labeled to be leaching from medical devices in the ELSIE dataset. 265 

Of these there were 9 sensitizers and 5 non-sensitizers with human data. All the non-sensitizers in 266 
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humans were also non-sensitizers in GPMT and only one sensitizer in humans was labeled as a 267 

non-sensitizer in GPMT.  268 

Given the small number of compounds with known experimental values from both GPMT 269 

and humans, we decided to apply our previously developed QSAR models of human data16 to the 270 

remaining 1210 compounds with GPMT data lacking human data. The use of QSAR-imputed 271 

human data allowed us to examine the possible relationships between the two endpoints for a much 272 

larger set of compounds. 273 

 274 

Table 4. Comparison of Skin Sensitization profile of GPMT and human clinical data. 275 

 
Human 

GPMT Sensitizer Non-Sensitizer Total 

Sensitizer 46 14 60 

Non-sensitizer 8 41 49 

Total 54 55 109 

 276 

A previous analysis published by Haneke et al.38 found that GPMT had sensitivity of 70% 277 

and specificity of 100%. However, the data analyzed was much smaller, with 57 chemicals and 278 

only 3 non-sensitizers. Variability of the GPMT has been documented as dependent on the total 279 

number of animals, dosage, and grade patterns of the sensitization response considered in the test.39 280 

Within the extensive data collected in this work, GPMT data showed high reproducibility. In the 281 

ECHA dataset, only three pairs of compounds out of 23 duplicate chemicals had discordant 282 

annotations. The data collected from the literature had only one pair of duplicates with discordant 283 

annotations among 221 chemicals. Finally, there were 41 pairs of replicates between these two 284 

data sets, and the sensitization potential was different for only six of these pairs. Conversely, 285 
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human tests show high inter-individual variability, especially for compounds tested at a high dose, 286 

which can show weak sensitization rates in the tested populations.40 287 

In our previous analysis,14 we found the accuracy of LLNA to predict Human skin 288 

sensitization was estimated to have a balanced accuracy of 68%, sensitivity of 84%, and specificity 289 

of 52%. The low specificity means that LLNA is oversensitive to predict human skin sensitization, 290 

i.e., more compounds tend to be skin sensitizers in mice than in humans. Conversely, GMPT 291 

showed higher concordance with human data, with specificity as high as 75%. 292 

 293 

An alternative to animal testing for skin sensitization for medical devices 294 

The GPMT was first published in 19693 and was considered the preferred animal method 295 

to assess skin sensitization caused by chemicals for decades. In 1989, the LLNA was first 296 

described.41 Since then, it underwent multiple evaluations and refinements, becoming the preferred 297 

animal testing for skin sensitization after the publication of the Organisation for Economic Co-298 

operation and Development (OECD) Testing Guideline No. 429.42 However, international 299 

standards (ISO 10993)43 still recommend the evaluation of chemicals released from MD for skin 300 

sensitization/allergenicity potential using the Guinea Pig Maximization Test (GPMT).6 301 

Recently, Svobodová et al.44 evaluated the sensitization potential of chemicals present in 302 

MD using a combination of in chemico (DPRA) and in vitro (LuSens) methods in comparison with 303 

the LLNA method and suggested a testing strategy for the safety assessment of medical device 304 

extracts. The authors reported an overall concordance of 63.9-82.5% between LLNA and DPRA 305 

and 80-85.4% between LLNA and LuSens. Unfortunately, no sensitivity and specificity were 306 

reported. The results shown in Table 4 of this study reveal that there is a high concordance between 307 

GPMT and human data, which is in contrast with our previous findings showing that LLNA tends 308 
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to be oversensitive as compared to the human response.14,37 Although GPMT shows a higher 309 

concordance with human data than the LLNA, it is important to note that GPMT requires the 310 

sacrifice of several animals45 for each tested chemicals and, therefore, better approaches need to 311 

become available soon. Recently, the Interagency Coordinating Committee on the Validation of 312 

Alternative Methods (ICCVAM) published a Strategic Roadmap,1 calling for the development of 313 

alternative approaches to reduce animal testing of chemical and medical agents. Thus, there is an 314 

expressed need to modernize the safety evaluation of MD using alternative methods, shorten the 315 

regulatory review time, and ultimately bring safer devices to the market faster.  316 

QSAR models developed in this study and implemented in the PreSS/MD web app showed 317 

balanced accuracy of 70-74%. Although our analysis of replicates identified only six out of 41 318 

replicated entries to disagree, a previous study has shown that dose, number of animals, and 319 

response pattern may influence in the outcome, which is evaluated by a specialist. Therefore, 320 

considering the absence of state-of-the-art predictors of GPMT as well as the variability of the 321 

assay, we suggest these models can be used to reduce the use of GPMT when used within 322 

integrated testing strategies. Moreover, since GPMT has shown higher concordance to human data 323 

than the LLNA, we suggest that QSAR models based on GPMT are more appropriate than running 324 

GPMT to assess the response to chemicals in humans. 325 

 326 

Discussion and conclusions. 327 

Previously, our group has developed the first QSAR models for skin sensitization based on 328 

human data.37 Later, we employed an innovative approach using human, LLNA, and three 329 

validated non-animal assays within a Bayesian model to predict the human response.14 This model 330 

showed higher accuracy in predicting the human response than the model built using only human 331 
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data.14 These models were implemented in a newer version of the Pred-Skin web app.16 Since the 332 

publication of the OECD Testing Guideline No. 429,42 LLNA has been regarded as the preferred 333 

animal test for evaluating skin sensitization. However, the GPMT is still required for the approval 334 

of MD. For this reason, we decided to develop a separate skin sensitization web application 335 

focusing on the safety evaluation of these devices. 336 

In order to apply in silico methods to predict the toxicity of MD, it is essential to note that 337 

a cornerstone in any safety evaluation of FDA-regulated products is an exposure assessment 338 

focused on actual conditions of use. Traditional methods to estimate exposure do not apply to all 339 

MD. Consequently, the medical device regulatory framework has implemented a chemical 340 

characterization and subsequent toxicological risk assessment approach. The chemical 341 

characterization involves identifying the device’s component or determining chemicals that might 342 

leach into a patient during use and corresponding quantities.46 Toxicologists use this information 343 

to conduct a risk assessment to ascertain whether any of the leachable chemicals might pose a 344 

health risk to patients at the doses quantitated. Both the chemical characterization and toxicological 345 

risk assessment for MD are generally done as recommended by the ISO standard 10993 Parts 18 346 

and 17, respectively. PreSS/MD can predict potential leachable compounds submitted for 347 

regulatory pre-market consideration. 348 

In summary, in this contribution we described the development of PreSS/MD, a web 349 

application to predict the skin sensitization potential of chemicals based on GPMT. This tool is the 350 

first publicly available tool based on this assay. Although non-animal assays have been explored 351 

to evaluate the potential skin sensitization effects of chemical hazards,2 animals are still required 352 

by regulatory agencies to evaluate MD. Our results here show that GPMT has a good correlation 353 

with human data, which is higher than the murine LLNA. However, although the use of guinea 354 
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pigs is justified as their response to various skin sensitizers is similar to humans, interpretation of 355 

these assays’ results requires unique expertise.47 Moreover, the use of guinea pigs raises moral and 356 

ethical concerns, defying the principle of the 3Rs – Replacement, Refinement, and Reduction – 357 

whose goal is to identify alternative methods that utilize phylogenetically lower species, reduce 358 

the number, and refine the use of animals to lessen pain and distress.1,48 Therefore, there is an 359 

imperative need to replace these assays. Our results show that the historical and publicly available 360 

GPMT data is sufficient to generate predictive and robust in silico models using machine learning 361 

approaches. The PreSS/MD web application fulfills an unmet need to help modernize the 362 

evaluation of skin sensitization for MD to reduce the need for animal testing. These models can be 363 

employed within integrated testing strategies to provide a weight of evidence of the sensitization 364 

potential of chemicals leaching from MD without requiring further animal tests. Moreover, we 365 

expect that the models developed in this study are applicable to estimate the toxicity of other 366 

industrial chemicals.49 The PreSS/MD web application is publicly available at 367 

https://pressmd.mml.unc.edu/. 368 

 369 

Data availability 370 

All curated datasets in SDF format and the results for virtual screening of the ELSIE dataset 371 

are freely available at https://doi.org/10.6084/m9.figshare.17708714.v1.  372 
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