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a b s t r a c t 

Chemically induced toxicity is the leading cause of recent extinction of honey bees. In this regard, we developed 
an innovative artificial intelligence-based web app (BeeToxAI) for assessing the acute toxicity of chemicals to 
Apis mellifera . Initially, we developed and externally validated QSAR models for classification (external set accu- 
racy ∼91%) through the combination of Random Forest and molecular fingerprints to predict the potential for 
chemicals to cause acute contact toxicity and acute oral toxicity to honey bees. Then, we developed and exter- 
nally validated regression QSAR models ( 𝑅 

2 = 0.75) using Feedforward Neural Networks (FNNs). Afterward, the 
best models were implemented in the publicly available BeeToxAI web app ( http://beetoxai.labmol.com.br/ ) . 
The outputs of BeeToxAI are: toxicity predictions with estimated confidence, applicability domain estimation, 
and color-coded maps of relative structure fragment contributions to toxicity. As an additional assessment of 
BeeToxAI performance, we collected an external set of pesticides with known bee toxicity that were not included 
in our modeling dataset. BeeToxAI classification models were able to predict four out of five pesticides correctly. 
The acute contact toxicity model correctly predicted all of the eight pesticides. Here we demonstrate that Bee- 
ToxAI can be used as a rapid new approach methodology for predicting acute toxicity of chemicals in honey 
bees. 
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. Introduction 

Pesticides play an essential role in protecting plants and reducing
arge-scale agricultural crop losses from insects and pathogens [ 1 , 2 ].
owever, several harmful effects of pesticides on aquatic and terrestrial
cosystems have been described in the literature, particularly towards
on-target species such as fishes, earthworms, birds, and bees [ 3 , 4 ]. In
he past few years, there has been increased concern regarding the im-
act of pesticides on bees [5–9] . During foraging or nectar, pollen, and
Abbreviations: ACC, accuracy; AD, applicability domain; AUC, area under receive
hreshold; 𝜅, Cohen’s kappa; LD 50 , median lethal dose that induces death in 50% of t
oefficient; ML, machine learning; NPV, negative predictive value; OCHEM, Online Ch
nd Development PPV, positive predictive value; QSAR, Quantitative StructureToxicit
olecular Input Line Entry Specification SP, specificity; SVM, Support Vector Machin
gency’s; 5FCV, 5-fold cross-validation. 
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ater collection, bees inadvertently may be contaminated with a wide
rray of pesticides [10] . Very often, contaminated bees carry these haz-
rdous chemicals back to the hive, potentially inducing sub-lethal or
ethal effects for the entire colony [ 10 , 11 ]. 

The drastic extinction of bees is a serious threat to global food secu-
ity and planetary ecosystem stability [ 12 , 13 ]. For this reason, scientific
dvisory bodies and government agencies have employed standardized
rotocols to test the acute toxicity of active pesticide ingredients against
dult honey bees ( Apis mellifera ) [14–17] . The United States Environ-
ental Protection Agency (EPA) Pollinator Risk Assessment Guidance
r operating characteristic curve, D s , Dice similarity; D T , applicability domain 
he population; MACCS, Molecular ACCess System; MCC, Matthews correlation 
emical Modeling Environment; OECD, Organization for Economic Cooperation 
y/Activity Relationship; RF, Random Forest; SE, sensitivity; SMILES, Simplified 
es; Tc, Tanimoto coefficient; US EPA, United States Environmental Protection 
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oral exposure dataset had 142 compounds. 
rovides both a short and long-term strategy to assess the risks posed
gainst honey bees by pesticides [16] . These animals can be exposed to
esticide residues by indirect contact on plant surfaces, via oral intake
ith contaminated water or food, or by direct contact during their ap-
lication in standard farming practice. If the proposed use pattern of a
esticide indicates a possible exposure of honey bees, acute contact and
ral toxicity studies are necessary for pesticide registration [16] . 

The acute toxicity tests examine the effects of a pesticide after a
hort-term exposure (24–96 h) using the median lethal dose that in-
uces death in 50% of the population (LD 50 ). The predominant exposure
outes are through contact (i.e., direct spray) or oral incubation (i.e.,
onsumption of nectar and pollen). Both the contact and oral toxicity
ests report toxicity values as 𝜇g/bee. If a pesticide’s active ingredient
s classified as highly or moderately toxic (LD 50 < 11 𝜇g/bee), it would
equire complementary studies to determine acute oral toxicity and fo-
iage test using the final product [18] . The US EPA estimates that studies
equired for pesticide registration cost around $ 13,400 for honey bee
cute toxicity, with a semi-field study on honey bees reaching $133,300
er chemical [19] . 

Understanding the costly and time-consuming characteristics of ex-
erimental assays, in silico models have emerged as a practical solu-
ion to be employed as screening tools and within integrated testing
trategies to avoid animal testing as well as reduce cost and chemical
aste [20] . Computational strategies comply with the “3R’s ” principle
f replacement, refinement, and reduction of animal testing [21] . The
ore simplistic approaches are based on the concept that compounds

haring structural similarity (read-across) [22] or certain substructures
structural alerts) [23] have increased probability to share the same tox-
cological properties [22] . However, there has been a growing concern
hat structural alerts disproportionally flag too many chemicals as toxic,
hich questions their reliability as toxicity markers [23] . Therefore,

heir use in regulatory toxicology has been hampered by the lack of
ransparency and interpretability [23] . 

Consequently, Quantitative Structure-Activity/Toxicity Relationship
QSAR/QSTR) models have been developed as alternative methods to
xperimental tests and rule-based methods. QSAR modeling reveals re-
ationships between structural properties of chemical compounds and
orresponding biological/toxicological properties [22–24] . These char-
cteristics confer more accurate predictions of the toxicity of untested
hemicals from their chemical structures [23] . Currently, the most
odern QSAR methodologies are developed using artificial intelligence
ethods, such as machine learning (ML) and deep learning (DL) algo-

ithms [ 25 , 26 ]. ML is a growing field of artificial intelligence that uses
ifferent statistical techniques to enable computers to learn from chem-
cal and biological or toxicological data without being explicitly pro-
rammed for this task [27] . These algorithms are capable of capturing
he complex nonlinear relationships between the relevant descriptors
i.e., mathematical representations of molecules’ properties) and the ob-
erved properties/toxicities [ 26 , 28 ]. 

Although QSAR is widespread in the ecotoxicology field, there are
ew freely available QSAR-based tools with a graphical interface to as-
ess the oral and acute contact toxicity of chemicals to honey bees
 29 , 30 ]. Similarly, no QSAR model has been reported to assess acute
ral toxicity of chemicals to honey bees. In addition, a critical analysis
eveals that the vast majority of the published models do not comply
ith the OECD principles [31] , as well as best practices for data cura-

ion [32–34] and QSAR modeling [35] . The main drawbacks of previous
SAR studies includes: (i) lack of evidence on data curation and dupli-
ate analysis [ 29 , 36–38 ]; (ii) use of an undefined or confusing endpoint
29] ; (iii) lack of AD estimation [ 29 , 37 , 39 ]; and (iv) lack of mechanistic
nterpretation [ 29 , 36–39 ]. For example, although the models developed
y Wang et al. [29] . and implemented in the BeeTox web app have sat-
sfactory predictive performance, estimates of the applicability domain
DA) and mechanistic interpretation of the predictions were not pro-
ided. In addition, we found more than 60 duplicates in its dataset,
hich can lead to overestimation of the model. Thus, their reliability
2 
or assessing chemically-induced acute toxicity for honey bees is not as-
ured. 

Hence, this manuscript describes the development and application
f an easily accessible, open-source, public-facing web application (Bee-
oxAI: http://beetoxai.labmol.com.br/ ) to democratize access to these
redictive QSAR models for a wide range of stakeholders, including reg-
lators, regulated industry, research scientists, and the public. BeeToxAI
s the first web app for the prediction of acute contact and oral toxicity
n honey bees fully compliant with the stringent predictive modeling
ractices [35] and OECD guidelines [31] . 

. Material and methods 

.1. Datasets 

A dataset of compounds containing experimental acute toxicity data
or honey bees ( A. mellifera ) was collected from the scientific literature
40–52] , as well as the US EPA’s Ecotox database [53] , EFSA’s Open-
oodTox database [54] , and Online Chemical Modeling Environment
OCHEM) database [55] . Data integration resulted in an uncured dataset
onsisting of 2543 pesticide and pesticide-like compounds representing
ifferent classes (e.g., insecticides, herbicides, fungicides) and with a
ide spectrum of toxicity mechanisms. Then, compounds with a me-
ian lethal dose (LD 50, 𝜇g/bee) for adult honey bee recorded after 48 h
ere categorized into toxic and nontoxic using a threshold of 11 𝜇g/bee
s described in the US EPA test guidelines [16] . Compounds were di-
ided into two independent datasets according to honey bee exposure
ype (contact and oral). A brief description of the datasets is presented
elow: 

• Contact exposure dataset (File S1): 615 compounds with LD 50 data
for contact exposure of honey bees. It consisted of 229 toxic com-
pounds with LD 50 ≤ 11 𝜇g/bee and 386 nontoxic compounds (LD 50 
> 11 𝜇g/bee). 

• Oral exposure dataset (File S2): 211 compounds with LD 50 data
for contact exposure of honey bees. It consisted of 93 toxic com-
pounds with LD 50 ≤ 11 𝜇g/bee and 118 nontoxic compounds (LD 50 
> 11 𝜇g/bee). 

.2. Data curation 

All chemical structures and correspondent LD 50 data were carefully
tandardized using Standardizer v.16.9.5.0 (ChemAxon, Budapest, Hun-
ary) according to the protocols proposed by Fourches and colleagues
32–34] . Briefly, explicit hydrogens were added, whereas salts, mix-
ures, polymers, and organometallic compounds were removed. In addi-
ion, specific chemotypes such as aromatic rings and nitro groups were
ormalized. Then, we performed the analysis and exclusion of dupli-
ates. Distinct criteria were employed, as follows: 

• Classificatory QSAR models: ( i ) if duplicates presented discordance in
toxicological outcomes (e.g., toxic vs nontoxic), both entries would
be excluded; and ( ii ) if the reported outcomes of the duplicates were
the same, one entry would be retained in the dataset and the other
excluded. After duplicate removal, the contact exposure dataset had
382 compounds (toxic: 112, nontoxic: 269), while the oral exposure
dataset had 169 compounds (toxic: 71, nontoxic: 98). 

• Regression QSAR models : ( i ) duplicates were inspected visually, ( ii )
if duplicates presented discordant potencies, both entries would be
excluded; and ( iii ) if the reported potencies were similar, an aver-
age of the values was calculated, and one entry was retained in the
dataset. Subsequently, the LD 50 values were converted to negative
logarithmic ( − log) units (pLD 50 ) at μM range. At the end of this pro-
cess, the contact exposure dataset had 218 compounds, while the

http://beetoxai.labmol.com.br/
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.3. Chemical space analysis 

The chemical space formed by toxic and nontoxic compounds for A.
ellifera and 2044 commercial pesticides (untested against A. mellifera )

ollected from Pesticide Product Information System Database [56] was
nalyzed by plotting a similarity map and was generated using OSIRIS
ataWarrior software v.05.02.01 [57] . The similarity map uses a Rub-
erbanding Forcefield approach, which translates similarity (vertices)
etween compounds (nodes). The approach involves the following steps:
 i ) randomly positioning all compounds in 2D space; ( ii ) calculating the
imilarity matrix between all compounds using Tanimoto coefficients
Tc) and FragFP descriptors; ( iii ) location of most similar neighbors (Tc
 0.8) to be considered for every compound; and ( iv ) stepwise relocation
f all compounds to ensure similar molecules were located close to each
ther [57] . 

.4. Classification models 

The models were developed in Python v.3.6 58 following best prac-
ices for QSAR modeling [35] , and are fully compliant with OECD prin-
iples for validation of QSAR modeling for regulatory purposes, i.e., a
efined endpoint, an unambiguous algorithm, a defined domain of ap-
licability, appropriate measures of goodness-of-fit, robustness and pre-
ictivity, and a mechanistic interpretation if possible [31] . 

.4.1. Molecular fingerprints 
Molecular ACCess System (MACCS) keys, Morgan (ECFP-like), and

eatMorgan (FCFP-like) fingerprints were calculated in the open-source
heminformatics software RDKit [59] with a diameter of 4–8 and bit
ector of 2048 bits [60] . ECFPs are circular fingerprints that captures
ighly specific atomic information enabling the representation of a large
et of precisely defined structural features [61] , whereas FCFP finger-
rints captures functional features (i.e., hydrogen-bond donor and ac-
eptors, aromatic, halogen, and basic and acid groups) [62] . 

.4.2. Dataset splitting and 5-fold cross-validation 
The general flowchart for splitting contact and oral datasets of com-

ounds is shown in Supplementary Fig. S1. Initially, datasets were split
nto modeling sets (80% of compounds) and external sets (20% of com-
ounds) using the random distribution approach. The modeling sets
ere used to generate QSAR models through a 5-fold external cross-
alidation (5FCV) approach, while the external sets were used to assess
he predictive power of models. The structural diversity of the mod-
ling and external set compounds was evaluated using the similarity
aps. These plots show that external set compounds occupy the same

hemical space as the modeling set compounds. The modeling sets were
ubjected to 5FCV approach where five subsets of equal size were gen-
rated. Together, four subsets (80% of the modeling set) were used to
uild the QSAR models (training set) and the remaining subset of 20%
test set) was employed to evaluate the robustness of the QSAR model.
SAR models were developed five times, allowing each of the five sub-

ets to be used as a momentary test set. The 5FCV modeling procedure
as followed by an evaluation of the model performance using the ex-

ernal holdout sets. 

.4.3. QSAR modeling and hyperparameter optimization 
QSAR models were developed using the Support Vector Machine

SVM) [63] and Random Forest (RF) [64] algorithms implemented in
cikit-learn v.0.24.2 [65] . Since the performance of ML is closely related
o its hyperparameters, the models were optimized using a Bayesian ap-
roach implemented in Scikit-Optimize v.0.7.4 [66] . Details of hyper-
arameters explored in this work are available in the Supporting Infor-
ation. The Bayesian optimization may be defined as follows: 

 

(
𝑓 D 1∶ 𝑡 

)
∝ P 

(
D 1∶ 𝑡 𝑓 

)
P ( 𝑓 ) (1)

here, x i is the i th sample, and 𝑓 (x i ) is the observation of the objective
unction at x i . The observations D 1: t = {x 1: t , 𝑓 (x 1: t )} are accumulated.
3 
he prior distribution is combined with the likelihood function P(D 1: t | 𝑓 )
f overserving D 1∶ 𝑡 given model 𝑓 multiplied by the prior probability
f P( 𝑓 ) . In doing so, Bayesian optimization finds hyperparameters that
aximize the objective function (G-mean score) by building a surrogate

unction (probabilistic model) based on past evaluation hyperparame-
ers of the objective [ 66 , 67 ]. The geometric (G)-mean was selected as
he scorer since it measures the balance between classification perfor-
ances on both the majority (nontoxic) and minority (toxic) classes. 

.4.4. Threshold-moving 
The QSAR models were calibrated using a threshold-moving ap-

roach implemented in Scikit-learn v.0.24.2 [65] . This approach uses
ifferent probability thresholds in the range of 0 to 1 obtained via the
eceiver Operating Characteristic (ROC) curve to find the threshold
ith the largest G-mean value. Thus, it is easier to predict the minority

lass examples accurately. To use the G-mean value as the model bound-
ry class, we implemented a Python class to overlay toxicity prediction
nd its probability in the Scikit-learn framework. Subsequently, prob-
bility values were scaled to estimate the confidence of predictions as
ollows: 

 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 

𝑥 − min ( 𝑥 ) 
max ( 𝑥 ) − min ( 𝑥 ) 

(2) 

here min ( 𝑥 ) denotes the minimum of the range of your measurement,
ax ( 𝑥 ) denotes the maximum of the range of your measurement, and
 ∈ [ min ( 𝑥 ) , max ( 𝑥 ) ] denotes your measurement to be scaled. Proba-
ilities 𝑥 are on the interval [0,1], with 𝑥 = min ( 𝑥 ) mapped to 0 and
 = max ( 𝑥 ) mapped to 1. 

.4.5. Assessment of model performance 
The internal and external predictive performances of QSAR mod-

ls were evaluated using accuracy (ACC), sensitivity (SE), specificity
SP), positive predictive value (PPV), negative predictive value (NPV),
atthews correlation coefficient (MCC), and area under the receiver

perating characteristic curve (AUC). These metrics were calculated as
ollows: 

CC = 

TP + TN 

N 

(3) 

E = 

TP 
TP + FN 

(4) 

P = 

TN 

TN + FP 
(5) 

PV = 

TP 
TP + FP 

(6) 

PV = 

TN 

TN + FN 

(7) 

CC = 

TP x TN − FP x FN √
( 𝑇 𝑃 + 𝐹 𝑃 ) ( 𝑇 𝑃 + 𝐹 𝑁 ) ( 𝑇 𝑁 + 𝐹 𝑃 ) ( 𝑇 𝑁 + 𝐹 𝑁 ) 

(8) 

UC = 

∑
i 

[(
S E 𝑖 +1 

)(
S P 𝑖 +1 − S P i 

)]
(9) 

here N represents the number of compounds, TP and TN represent the
umber of true positives and true negatives, and FP and FN represent
he number of false positives and false negatives, respectively. 

In addition to the above model evaluation metrics, Cohen’s kappa
 𝜅) was used to measure the agreement between experimental data and
odel predictions [68] . This statistical parameter is calculated by the

ollowing equations: 

r ( 𝑎 ) = 

TP + TN 

N 

(10) 

r ( e ) = 

( TP + FP ) x ( TP + FN ) + ( TN + FN ) x ( TN + FP ) 
(11) 
N 
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Pr ( 𝑎 ) − Pr ( 𝑒 ) 
1 − Pr ( 𝑒 ) 

(12)

here Pr(e) is the hypothetical probability of chance agreement, and
r(a) represents the relative observed agreement between the predicted
lassification of the model and the known classification. 

.4.6. Applicability domain (AD) 
Any QSAR model needs to demonstrate not only good accuracy but

lso characterize the reliability of external predictions. To address the
atter, the AD of models was estimated using Dice similarity ( D 𝑆 ) be-
ween a compound under prediction (A) and the training set compounds
B) [69] . The Dc is calculated by the following equation: 

 S = 

2 |A ∩ B ||A | + |B | (13)

here a set with vertical bars on either side refers to the cardinality of
he set, i.e., the number of bits (fingerprints) in that set. The ∩ is used
o represent the intersection of two sets (bits that are common to both
ets). Then, an AD threshold ( D T ) was defined to estimate the reliability
f external predictions: 

 T = ȳ + Zσ (14)

here ӯ is the average D 𝑆 of the compounds under prediction and train-
ng set compounds, 𝜎 is the standard deviation of D 𝑆 , and Z is an arbi-
rary parameter to control the significance level. We set the default value
f this parameter Z at 0.5. If the compound distance exceeds the D T , the
rediction may be considered less trustworthy [70] . 

.5. Regression models 

Then, regression models based on Feedforward Neural Networks
FNNs) were developed using Keras ( https://keras.io/ ), and Tensorflow
 www.tensorflow.org ) as backend. Initially, the datasets were split into
odeling sets (80% of compounds) and test sets (20% of compounds)
sing the random distribution approach. Then, regression models were
eveloped using ECFP4 fingerprints and pLD 50 values at μM range. The
rchitecture of the FNNs was optimized according to the following com-
inations: layer type (dense), number of hidden layers (3–7), activation
unctions (ReLU, Elu, Selu), output layer function (sigmoid), model op-
imizer (Adam). The “mean squared error ” was used as a loss function.
he “mean absolute error ” was used as a parameter to judge the per-
ormance of the models. The following hyperparameters were used for
urther FNN training: the number of epochs (1–200), dropout (0.001),
nd batch size (5–30). Baseline comparison of models was performed
sing Support Vector Regression (SVM) [63] and RF [64] algorithms
mplemented in Scikit-learn v.0.24.2 [65] . The predictive performance
f regression models was evaluated using correlation coefficient ( 𝑅 

2 ),
oot mean square error (RMSE), and mean absolute error (MAE) [71] .
hese metrics were calculated as follows: 

 

2 = 1 − 

∑𝑛 𝑡𝑒𝑠𝑡 
𝑖 =1 ( 𝑌 𝑜𝑏𝑠 − 𝑌 𝑝𝑟𝑒𝑑 ) 2 ∑𝑛 𝑡𝑒𝑠𝑡 
𝑖 =1 ( 𝑌 𝑜𝑏𝑠 − 𝑌 𝑡𝑟𝑎𝑖𝑛 ) 

2 (15)

𝑀𝑆𝐸 = 

√ ∑𝑛 𝑡𝑒𝑠𝑡 
𝑖 =1 ( 𝑌 𝑜𝑏𝑠 − 𝑌 𝑝𝑟𝑒𝑑 ) 2 

𝑛 𝑡𝑒𝑠𝑡 
(16)

𝐴𝐸 = 

∑𝑛 𝑡𝑒𝑠𝑡 
𝑖 =1 

|||𝑌 𝑜𝑏𝑠 − 𝑌 𝑝𝑟𝑒𝑑 
|||

𝑛 𝑡𝑒𝑠𝑡 
(17)

n the above equations, 𝑌 𝑜𝑏𝑠 represents experimental pLD 50 value, 𝑌 𝑝𝑟𝑒𝑑 
epresents the predicted pLD 50 value, 𝑛 𝑡𝑟𝑎𝑖𝑛 and 𝑛 𝑡𝑒𝑠𝑡 are the number of
ompounds in training and test set, respectively, and 𝑌 𝑡𝑟𝑎𝑖𝑛 is the average
f experimental values of the training set. 
4 
.6. Model interpretation 

Contribution maps[ 72 , 73 ] were generated from QSAR models to vi-
ualize the fragments and atoms contributing to acute contact and oral
oxicities. Here, the "weight" of an atom was considered as a predicted-
robability difference (classification models) or pLD 50 difference (re-
ression models) obtained when the bits in the fingerprint correspond-
ng to the atom are removed. Then, the normalized weights were used
o color the atoms in a topography-like map in which green indicating
egative contribution for toxicity (i.e., predicted probability or pLD 50 in-
reases when the bits are removed), and red indicating a positive contri-
ution for toxicity (i.e., predicted probability or pLD 50 decreases when
he bits are removed) [73] . 

.7. Model implementation 

The BeeToxAI web app was implemented on a multiplatform frame-
ork with technology ready to support large-scale demands on mi-

roservice serverless and Kubernetes environments [74] . The backend
erving makes deploying new algorithms and experiments easy while
eeping the same server architecture and the APIs. The APIs work with
SON infrastructure and permit out-of-the-box integration with other
omputer software (e.g., KNIME or a custom front-end). The main li-
raries integrated are Python [58] , RDKit [59] , Scikit-learn [65] , uWSGI
75] , JavaScript [76] , Flask [77] , Matplolib [78] , and Seaborn [79] .
eeToxAI also includes the JSME molecule editor written in JavaScript
80] , which is supported by the most popular web browsers. Java or
lash plugins are not required to use the app. Also, our back and front-
nd use GitLab [81] , CI/CD for Continuous integration (CI), Continu-
us Delivery (CDE), and Continuous Deployment (CD). The application’s
ode base is hosted in a Git repository [82] and, to every push, runs a
ipeline of scripts to build, test, validate, and deploying your application
o production. 

. Results and discussion 

In the present study, we integrated and carefully compiled the largest
ollection of compounds with acute toxicity data (LD 50 ) for adult A. mel-
ifera . The compounds were divided into “contact ” (File S1) and “oral ”
File S2) datasets according to the type of bee exposure during experi-
ental acute toxicity assays. A threshold of 11 𝜇g/bee was used to cat-

gorize compounds into toxic ( ≤ 11 𝜇g/bee) and nontoxic ( > 11 𝜇g/bee)
s described in the US EPA test guidelines [16] . 

Subsequently, we carefully curated contact and oral datasets using
tandard protocols [32–34] . Data curating represents a crucial step for
uilding predictive QSAR models. It has been recognized that genotype
ifferences among the 26 recognized subspecies of A. mellifera can di-
ectly impact the response to chemicals [83] . Unfortunately, subspecies
nformation is not provided for most chemicals deposited in public do-
ain databases. In addition, considerable differences often appear when

oxicity tests are performed by different laboratories [84] and when dif-
erent colonies of a single subspecies are tested in the same laboratory
85] . On the other hand, the same compound may be registered multiple
imes in the modeling and external sets. QSAR models built with datasets
ontaining duplicates will have low accuracy if toxicity outcomes are
issimilar or overoptimistic performances if outcomes are identical [34] .
espite this, data curation procedures have not been uniformly applied

o the development of some QSAR models [ 29 , 36–38 ]. 
The number of compounds in contact and oral datasets is shown in

able 1 . After data curation and duplicate removal, the contact expo-
ure dataset had 382 compounds (toxic: 113, nontoxic: 269) while the
ral exposure dataset had 169 compounds (toxic: 71, nontoxic: 98). The
atasets were further divided (Fig. S1) into modeling (80%) and exter-
al (20%) sets. So, 305 compounds of the contact dataset were used
or the model development while the remaining 77 compounds (20%)
ere used to validate the models. Similarly, 135 compounds of the oral

https://keras.io/
http://www.tensorflow.org
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Table 1 

Distribution of chemicals in the modeling and external validation set of contact 
and oral exposure datasets. 

Datasets Classification models Regression models 

Toxic Nontoxic 

Contact dataset 

Modeling set 90 215 174 
External set 23 54 44 
Total 113 269 218 

Oral dataset 

Modeling set 57 78 114 
External set 14 20 28 
Total 71 98 142 
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ataset were used for model development while the remaining 34 com-
ounds were used to validate the models. The overall quality of dataset
plitting is shown in Supplementary Fig. S2, which indicated that exter-
al set compounds are relatively distributed in all regions of the chem-
cal space of modeling set compounds. 

On the other hand, for the datasets to develop regression models, af-
er data curation and duplicate removal, the contact exposure dataset
ad 218 compounds while the oral exposure dataset had 142 com-
ounds. After splitting the datasets into modeling (80%) and external
20%) sets, 174 compounds of the contact dataset were used for the
odel development and 44 compounds were used to validate the mod-

ls. In the same manner, 114 compounds of the oral dataset were used
or model development and 28 compounds were used to validate the
odels. 

.1. Chemical space analysis 

The analysis of chemical space was performed by using contact and
ral exposure datasets and 2044 pesticides collected from the Pesti-
ide Product Information System Database [56] . The analysis has been
erformed by plotting both datasets separately against the pesticide
atabase using similarity maps ( Fig. 1 ) [57] . 

As shown in Fig. 1 , both datasets are structurally diverse, contain-
ng smaller clusters of similar compounds (black circles), and covers all
egions of the chemical space of pesticides. This finding correlates well
ith our previous observation that a broad range of chemical categories

drugs, industrial use, pesticides, cosmetics) have similar structures and
hat a property of a compound depends on its chemical structure and
ot on its industrial class [86] . 

When analyzing the outcomes of the contact dataset ( Fig. 1 a), it
as found that most of the toxic and nontoxic compounds do not

hare the same clusters, and similar characteristics were observed in
he oral dataset ( Fig. 1 d). This analysis shows that both datasets have
ew toxicity cliffs (i.e., structurally similar compounds with a large dif-
erence in toxicity) [87–89] . Representative compounds of clusters 1–3
rom the contact dataset are shown in Fig. 1 b. Cluster 1 contains toxic
yrethroids; cluster 2 – toxic organothiophosphates; cluster 3 – non-
oxic sulfonylureas. The representative compounds of clusters 1–3 from
he oral dataset are shown in Fig. 1 d. Cluster 1 contains toxic phospho-
othioates; cluster 2 – toxic pyrethroids; cluster 3 – nontoxic azoles. 

.2. Performance of classification models 

A total of 20 classification models were developed by a combina-
ion of two ML methods (RF and SVM) along with three fingerprint
ets: MACCS, FCFP and ECFP (diameter 4: FCFP4, ECFP4; diameter 8:
CFP8, ECFP8). The statistical characteristics of the QSAR models devel-
ped for acute contact toxicity and acute oral toxicity are summarized
n Tables S1 and S2. Briefly, ACC values ranged between 0.81–0.89;
E = 0.64–0.82; SP = 0.81–0.98, 𝜅 = 0.58–0.74; and MCC = 0.59–0.75.
5 
he model built using ECFP4 + RF demonstrated the best internal per-
ormance among all other models developed for acute contact toxicity
ACC = 0.89; SE = 0.70; SP = 0.96; and 𝜅 = 0.71). The model built using
CFP4 + SVM demonstrated the best internal performance among mod-
ls developed for acute oral toxicity (ACC = 0.87; SE = 0.75; SP = 0.96;
nd 𝜅 = 0.74). 

Furthermore, the external sets were used to evaluate the predictivity
f the QSAR models. Because external set compounds were not involved
n model building, the resulting performance reflects the ability of the
odels to predict the toxicity of new compounds. The results indicate

hat models built using FCFP4 + RF, ECFP4 + RF and ECFP8 + RF (Ta-
le S1) showed the best external predictivity among all other models
eveloped for acute contact toxicity (ACC = 0.90; SP = 0.98; 𝜅 = 0.73).
owever, these models have a limited ability to correctly predict toxic
ompounds (SE = 0.70). The model developed using MACCS + RF (Ta-
le S2) showed the best external predictivity among all other models
eveloped for acute oral toxicity (ACC = 0.88; SE = 0.86; SP = 0.90;
nd 𝜅 = 0.76), suggesting that this model has a higher accuracy to sort
he toxicological potential of new compounds. 

.3. Threshold-moving calibration for imbalanced classification 

To increase prediction confidence without losing data, i.e., without
eeding to balance the data, we tried threshold-moving calibration of
robability estimates [90] . Mechanistically, classification models also
utput a continuous value as the probability of a given case belonging
o a output class. The probabilities can be interpreted as the likelihood
r confidence of a given case belonging to each class. Here, classifi-
ation models were trained independently using acute contact and oral
atasets to distinguish toxic vs. nontoxic compounds. Usually, predicted
robabilities values less than 0.5 are assigned to the class of nontoxic
ompounds and values greater than or equal to 0.5 are assigned to the
lass of toxic compounds. However, QSAR models developed for classifi-
ation using imbalanced data usually provide poor probability estimates
 < 0.5) for the minority class [ 91 , 92 ]. In view of this, different proba-
ility thresholds in a range between 0 and 1 were explored to find the
ptimal threshold that reflects the best performance. Details of statis-
ical performances of calibrated models for acute contact toxicity and
cute oral toxicity are summarized in Tables S3 and S4, respectively. In
eneral, the threshold-moving led to significant improvements in statis-
ical performance of these QSAR models ( Fig. 2 a). As shown in Table 2
nd Fig. 2a , changing the threshold from 0.5 to 0.32 improved the ACC
 + 4%), MCC ( + 14%), and 𝜅 ( + 16%) of the FCFP4 + SVM model devel-
ped for acute contact toxicity. Based on this, the adjusted probability
hreshold obtained for this model was kept as the final model for the
rediction of acute contact toxicity of new compounds. 

The performance of the acute oral toxicity models was also investi-
ated after threshold-moving calibration, although they were generated
sing a dataset with a similar ratio of toxic and nontoxic compounds
1:1.4). The statistical characteristics of calibrated models developed
or acute oral toxicity are shown in Tables 2 and S4. According to the
adar plot ( Fig. 2 b), the threshold-moving calibration did not lead to ap-
arent improvements in the internal and external performances of these
odels. Consequently, threshold-moving calibration was not used as ad-

usting parameters for predicting acute oral toxicity of new compounds.
From the statistical point of view, our modeling approach enabled

he development of externally predictive classification models. How-
ver, building QSAR models trained with small datasets of compounds
ust always be considered delicate, since it may suffer from various
eficiencies like inconsistent classifications for chemicals outside AD.
urthermore, mechanistic interpretation of these models may be chal-
enging given the sum of a plethora of toxicological mechanisms, each
nvolving different biochemical pathways concurring to the final effect.
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Fig. 1. Structural distribution of toxic and nontoxic com- 
pounds from contact (a) and oral (c) datasets along with the 
chemical space of pesticides. Three clusters of highly similar 
compounds are highlighted by black circles and numbered. 
(b) and (d) denotes representative compounds of clusters 1–
3 highlighted in contact and oral datasets, respectively. Red 
triangles represent toxic compounds, green squares represent 
nontoxic compounds, and gray circles represent pesticides col- 
lected from Pesticide Product Information System Database. 
Compounds with a Tanimoto coefficient > 0.8 are connected 
by vertices. The color scheme in the background represents 
the number of neighbors. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web 
version of this article.) 

Table 2 

Statistical characteristics of best QSAR models developed for acute contact toxicity and acute oral toxicity. 

Fingerprint Method PT Set ACC SE SP PPV NPV 𝜅 MCC AUC Coverage 

Acute contact toxicity models 

FCFP4 SVM 0.32 a Modeling 0.87 0.78 0.90 0.77 0.91 0.68 0.68 0.84 0.65 
External 0.91 0.78 0.96 0.90 0.91 0.77 0.78 0.87 0.70 

ECFP8 RF 0.37 a Modeling 0.88 0.78 0.93 0.81 0.91 0.71 0.71 0.85 0.64 
External 0.90 0.74 0.96 0.89 0.90 0.74 0.75 0.85 0.67 

ECFP4 RF 0.26 a Modeling 0.86 0.80 0.89 0.75 0.91 0.68 0.68 0.84 0.68 
External 0.90 0.83 0.93 0.83 0.93 0.75 0.75 0.88 0.74 

Acute oral toxicity models 

MACCS RF 0.50 b Modeling 0.82 0.74 0.88 0.82 0.82 0.63 0.63 0.81 0.75 
External 0.88 0.86 0.90 0.86 0.90 0.76 0.76 0.88 0.85 

ECFP8 SVM 0.50 b Modeling 0.84 0.75 0.91 0.86 0.84 0.68 0.68 0.83 0.66 
External 0.85 0.86 0.85 0.80 0.89 0.70 0.70 0.85 0.79 

FCFP4 RF 0.50 b Modeling 0.84 0.67 0.96 0.93 0.80 0.65 0.67 0.81 0.68 
External 0.85 0.64 1.00 1.00 0.80 0.68 0.72 0.82 0.79 

RF, Random Forest; FCFP4, functional-class fingerprints with diameter 4; ECFP4, extended-connectivity fingerprints with diameter 4; ECFP8, extended-connectivity 
fingerprints with diameter 8; SVM, Support Vector Machine; PT, probability threshold; ACC, accuracy; SE, sensitivity; SP, specificity; PPV, positive predictive value; 
NPV, negative predictive value; 𝜅, Cohen’s kappa; MCC, Matthews correlation coefficient; AUC, area under ROC curve; Coverage, ratio of test set or external set 
compounds within the applicability domain. a Statistical results obtained after threshold-moving calibration. b Statistical results obtained from default probability 
threshold. 

6 
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Fig. 2. Comparison of the best QSAR models developed for (a) acute contact toxicity and (b) acute oral toxicity across multiple metrics using standard probability 
values and threshold-moving calibration. ACC: accuracy; SE: sensitivity; SP: specificity; PPV: positive predictive value; and NPV: negative predictive value; 𝜅: Cohen’s 
kappa; MCC: Matthews correlation coefficient; AUC: area under ROC curve. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.) 
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.4. Performance of regression models 

Following the results from the former section, we developed regres-
ion models using FNNs aiming to predict pLD 50 values for acute contact
nd acute oral toxicities on honey bees. We evaluated the combination
f different FNN configurations and hyperparameters for both acute con-
act and acute oral datasets. The best performance was determined based
n the best balance between 𝑅 

2 and RMSE. The tested hyperparameters
nd their respective influence on model performance are shown in Fig. 3 .
nitially, we assessed different number of hidden layers for each dataset,
ince depth has a large impact on the model complexity and can lead
o overfitting of models. As we can see in Fig. 3 a,b, five hidden layers
howed the best results for the acute contact toxicity model, while six
idden layers improved the performance for acute oral toxicity model.
n addition, ReLU activation function showed the best results among all
ested functions ( Fig. 3 c,d). In addition, batch sizes of 20 and 15 showed
he best performances for the acute contact and acute oral models, re-
pectively ( Fig. 3 e,f). 

After the finding of the best combinations, we found that most pre-
ictive acute contact model ( 𝑅 

2 = 0.75, RMSE = 0.39, and MAE = 0.32)
as generated using five hidden layers, decreasing the number of neu-

ons in the subsequent hidden layer [512, 256, 128, 16, and 4, respec-
ively ( Fig. 3 g)], the ReLU activation function, batch size of 20, and
99 epochs. On the other hand, the best acute oral model ( 𝑅 

2 = 0.75,
MSE = 0.68, and MAE = 0.53) was generated using six hidden lay-
rs, decreasing the number of neurons in the subsequent hidden layer
512, 256, 128, 64, 32, and 16, respectively ( Fig. 3 h)], the ReLU activa-
ion function, batch size of 15, and 142 epochs. We also trained RF and
VR methods using ECFP4 fingerprints as baseline models to examine
ataset modelability. SVR algorithm advantages in modeling nonlinear
 s  

7 
roblems [63] , whereas RF attracts much interest in QSAR studies be-
ause it is not sensitive to the hyperparameters [64] . For both acute tox-
city endpoints, regression models based on optimized FNNs (R 

2 ≥ 0.75)
howed superior performance over RF and SVR (R 

2 ≤ 0.41) models, indi-
ating that modeled datasets do not have easily distinguishable patterns
nd are not biased. 

.5. Comparison with publicly available models 

.5.1. Classification models 
Several classification methods have been developed to assess

hemical-induced acute toxicity on honey bees, and thus a comparison
f their statistical performances is shown in Table 3 . 

Overall, the classification models reported in this study (ACC = 0.91,
CC = 0.78) showed higher performance compared with those gen-

rated by Como et al. (ACC = 0.84, MCC = 0.67) [37] , Venko et al.
ACC = 0.77, MCC = 0.48) [38] , Wang et al. (ACC = 0.83, MCC = 0.59)
29] , Li et al. (ACC = 0.90, MCC = 0.76) [39] , and Singh et al.
ACC = 0.87 and 0.89 for classification and multi-class classification,
espectively) [36] . On the other hand, our model showed statistical per-
ormance comparable with QSAR developed by Carnesecchi et al. [93] .
ACC = 0.90, MCC = 0.78). Nonetheless, it is noteworthy that these com-
arisons should not be interpreted rigorously, as different compositions
nd sizes of the training and test sets were used to build models. In ad-
ition, Carnesecchi et al. [30] . developed externally predictive QSAR
odels to assess the acute contact toxicity of mixtures to honey bees

 𝑅 

2 = 0.89), and the nature of combined synergic/non-synergic toxicity
ACC = 0.96, MCC = 0.90). Although these models may contribute to
ll part of the gaps in toxicological assessment in honey bees, it is not
uitable to compare them with our active ingredient-based models, since
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Fig. 3. Different architectures and hyperparameters evaluated for both acute contact and acute oral regression models. (a) number of hidden layers assessed and their 
𝑅 

2 and RMSE results for the acute contact external set. (b) number of hidden layers tested and their 𝑅 

2 and RMSE results for acute oral external set. (c) activation 
functions tested and their 𝑅 

2 results for acute contact external set. (d) activation functions assessed and their 𝑅 

2 results for acute oral external set. (e) batch sizes 
evaluated and their 𝑅 

2 and RMSE results for acute contact external set. (f) batch sizes evaluated and their 𝑅 

2 and RMSE results for acute oral dataset. (g and h) 
number of cells in hidden layers of the best models for acute contact and oral toxicities, respectively. 

Table 3 

Comparison of the external performances of classification models developed here with publicly available models. 

Model Type Method Descriptor n test ACC SE SP MCC Ref. Year 
Models developed in this work 

Acute contact toxicity Classification SVM FCFP4 77 0.91 0.78 0.96 0.78 – –
Acute oral toxicity Classification RF MACCS 34 0.88 0.86 0.90 0.76 – –

Literature models 

Venko et al. Classification CPANN Dragon 22 0.77 0.75 0.79 0.48 [38] 2018 
Singh 
et al. 

Classification PNN CDK 36 0.87 0.85 1.00 – [36] 
Multi-class classification PNN CDK 59 0.89 0.85 0.91 – 2014 

Li et al. Classification SVM SubFP 43 0.90 0.83 0.93 0.76 [39] 2017 
Como et al. Classification k-NN VEGA 41 0.84 0.80 0.86 0.67 [37] 2017 
Carnesecchi et al. Classification k-NN Dragon 83 0.90 0.93 0.85 0.78 [93] 2020 
Wang et al. Classification GACNN Undirected graph 90 0.83 0.69 0.89 0.59 [29] 2020 

Note: RF, Random Forest; FCFP4, functional-class fingerprints with diameter 4; SVM, Support Vector Machine; PNN, Probabilistic Neural Network; k-NN, k-Nearest 
Neighbor; CPANN, Counter-Propagation Artificial Neural Network; GACNN, Graph Attention Convolutional Neural Network; MACCS, Molecular ACCess System 

keys; CDK, Chemistry Development Kit; SubFP, Substructure fingerprint; ACC, accuracy; SE, sensitivity; SP, specificity; MCC, Matthews correlation coefficient. 
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hey were developed using a small dataset ( n = 120) of binary mixtures
30] . 

.5.2. Regression models 
A comparison of predictive performances of our regression models

ith publicly available models is shown in Table 4 . Again, a rigorous
omparison with previous models reported in the literature is not fea-
ible due to different compositions of the training and test sets. De-
pite that, the best model developed for acute contact toxicity presented
ower error on test set compared to the model developed by Hamadache
t al. (RMSE = 0.71) [94] , Carnesecchi et al. (RMSE = 0.71) [93] , and
oropov and Benfenati (RMSE = 0.68) [95] , while the best model de-
eloped for acute oral toxicity presented comparable statistical perfor-
ance with them. On the other hand, the best model developed for

cute contact toxicity showed comparable statistical performance with
he models developed by Devillers et al. (RMSE = 0.39) [96] and Singh
t al. (RMSE = 0.33) [36] , Although our models presented higher errors
n the test set compared to the model of Dulin et al. (RMSE = 0.218),
8 
heir number of compounds on the test set ( n = 6) could overestimate
he external performance of this model. Mukherjee et al. [97] . did not
alculate the RMSE metric of their model. Compared to Mukherjee et al.
97] . work ( 𝑅 

2 = 0.666), we have modeled a more structurally repre-
entative dataset of chemicals that allowed us obtain more predictive
odels ( 𝑅 

2 = 0.75). 

.6. The BeeToxAI usage 

The most predictive classification and regression models for acute
ontact and oral toxicity were implemented in the BeeToxAI web app
 http://beetoxai.labmol.com.br/ ). The BeeToxAI has an intuitive user
nterface ( Fig. 4 ), in which the user may draw a compound of interest
n the “molecular editor ” box or directly paste the Simplified Molecular
nput Line Entry Specification (SMILES) string of the queried chemi-
al structure. After hitting the “Submit Analysis ” button, the user will
eceive the classification outcomes (e.g., toxic, nontoxic) using the best
lassification models developed for acute contact and oral toxicities. Are

http://beetoxai.labmol.com.br/
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Fig. 4. User interface of BeeToxAI. The query chemical can be drawn in the “molecular editor ” box or directly by pasting the SMILES strings. After hitting the “Submit 
Analysis ” button, the user will receive predicted values and LD 50 for acute contact and oral toxicities, predicted probability values, AD estimates, and color-coded 
maps of fragment contributions to toxicity. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 4 

Comparison of the external performance of publicly available vs our regression 
models. 

Model n test 𝑅 2 RMSE Ref. Year 
Models developed in this work 

Acute contact toxicity 44 0.75 0.39 – –
Acute oral toxicity 28 0.75 0.68 – –

Literature models 

Hamadache et al. 16 0.96 0.71 [94] 2018 
Devillers et al. 11 0.94 0.39 [96] 2002 
Singh et al. 47 0.86 0.33 [36] 2014 
Dulin et al. 6 0.85 0.218 [98] 2012 
Carnesecchi et al. 25 0.74 0.71 [93] 2020 
Toropov and Benfenati 20 0.72 0.68 [95] 2007 
Roy et al. 23 0.66 – [97] 2021 
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lso showed predicted probability values, which are useful for estimat-
ng the confidence of classification outcomes [70] . When a compound is
lassified as toxic by acute contact or oral toxicity classification model,
hen the prediction by the respective regression model is activated and
he predicted LD 50 is displayed on the screen. All predictions are fol-
owed by the AD estimates and mechanistic interpretation using color-
oded maps of fragment contribution [ 72 , 73 ]. For the maps, atoms or
ragments promoting positive toxicity contributions are highlighted in
ed, while structural moieties decreasing the toxicity are highlighted in
reen. Also, the predicted pLD 50 is shown on the respective contribution
ap. 
9 
.7. Case study using BeeToxAI 

In order to carry out an additional statistical validation of the Bee-
oxAI app, we compiled and prepared a list of 8 additional pesticides
not included in the QSAR datasets) with honey bee contact and/or oral
D 50 data used in the United States from 1992 to 2014 (Table S5). Then,
e used BeeToxAI to predict these pesticides’ contact and oral toxicity
otential to honey bees ( Figs. 5 and 6 ). 

According to the results of BeeToxAI ( Figs. 5 and 6 ), the acute oral
oxicity classification model correctly classified four out of five pesti-
ides (three of the listed pesticides did not have experimental data on
cute oral toxicity) and the acute contact toxicity classification model
orrectly classified all of the eight pesticides. The pesticide incorrectly
lassified by the acute oral toxicity classification model was correctly
redicted by the respective regression model. These results corroborate
ith the high external predictive power reported above. On the other
and, two compounds were erroneously predicted by the acute contact
oxicity regression model. Most of the incorrect predictions were out-
ide of the model AD. Therefore, the analysis of predictions using Bee-
oxAI should be cautious when considering chemicals outside the DA,
ince the classification and regression models were trained using small
atasets. 

All predictions are accompanied by color-coded maps of fragment
ontributions to toxicity ( Figs. 5 and 6 ). These contribution maps esti-
ate the weight of single fragments or atoms to toxicity by removing

hem from the structure and calculating the difference between the pre-
icted values for the initial structure and the structure with a removed
ragment. This enables estimation of the contributions of whole frag-
ents (functional groups, scaffolds, linkers) as well as their combined
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Fig. 5. Experimental and predicted toxicity of four pesticides from the external set and structural fragments’ contribution to toxicity. NR = Not Reported. Fragments 
increasing the toxicity are highlighted in red and fragments decreasing the toxicity are colored in green. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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ffect if two or more groups are removed simultaneously from the struc-
ure [73] . 

Overall, contribution maps from BeeToxAI allow the user to analyze
he individual contribution of each fragment for acute oral toxicity and
ontact toxicity. In addition, the AD and prediction probabilities pro-
ide further context to the model outputs that allow for estimates of
verall confidence. Other existing models do not provide this degree of
echanistic interpretation [ 29 , 36–39 , 93 ]. Mechanistic interpretation of
redictions reported here can lead to such additional benefits as (i) elic-
tation of structural alerts; (ii) insights on the mode of action; and (iii)
tility to chemists who want to modify the molecule [ 99 , 100 ]. BeeToxAI
ndicated the significant contribution of several fragments for toxicity,
ncluding phosphinates (see fenamiphos acute oral toxicity map, Fig. 5 )
nd phosphonates (see oxydemeton-methyl and phosphamidon maps,
ig. 6 ). In view of this, we overcame an inherent trade-off between pre-
ictive performance and interpretability that has been traditionally as-
umed [101] , implementing highly predictive and interpretable QSAR
odels in BeeToxAI. 

. Conclusion 

In this work, we developed and rigorously validated classification
nd regression QSAR models that accurately predict acute contact and
ral toxicities of chemicals to honey bees. Benchmarking with existing
omputational tools demonstrated superior or comparable performance.
n addition, we implemented a visual algorithm that facilitates model
10 
nterpretation. These models were implemented in the BeeToxAI web
pp – a fast, reliable, and user-friendly tool for the assessment of acute
hemical toxicity to honey bees. Users can make predictions using rigor-
usly and externally validated computational models that fulfill all the
ECD principles for developing and validating QSAR models for regu-

atory purposes. The web app does not require any prior knowledge of
rogramming or computational skills for its utilization. The predictions
or a single compound take only a few seconds. 

Furthermore, BeeToxAI provides the user with the following out-
omes: (i) toxic/nontoxic classification for acute contact toxicity and
cute oral toxicity honey bees endpoints; (ii) confidence of the pre-
ictions; (iii) applicability domain estimation; and (iv) color-coded
ontribution maps illustrating the relative contribution of chemical
ragments for toxicity. The web app, designed to openly share the
forementioned predictive models, is freely available to the public at
ttp://beetoxai.labmol.com.br/ . We propose these models as a valu-
ble contribution to the scientific community that enables regulators
nd regulated companies to rapidly evaluate the risk of chemical harm
o honey bees ( Apis mellifera) for the registration of the new pesticides.
uture directions of the BeeToxAI include the implementation of Quan-
itative Activity-Activity Relationships (QAAR) [102] , Mode of Action
MoA) predictors, multi-task (species) models, and read-across (nearest
eighbors) [23] . In this context, the ongoing BeeToxAI project aims to
mplement new predictive models to assess the acute toxicity of active
ngredients and mixtures [30] against multiple stages (adult and larvae)
f honey bees and bumble bees. 

http://beetoxai.labmol.com.br/
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Fig. 6. Experimental and predicted toxicity of four pesticides from the external set and structural fragments’ contribution to toxicity. NR = Not Reported. Fragments 
increasing the toxicity are highlighted in red and fragments decreasing the toxicity are colored in green. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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